MULTIPLICATION

Reception:

EHLT are implementing Mastering Number at Reception in September 2024.

The programme aims to secure firm foundations in the development of good number sense for all children from Reception through to Year 1 and Year 2. The aim over time is that children will leave KS1 with fluency in calculation and a confidence and flexibility with number. Attention will be given to key knowledge and understanding needed in Reception classes, and progression through KS1 to support success in the future. Over the year, the children will experience using a range of resources and representations.

Research shows that children with secure 'number sense' early on will make more progress later on in maths and across the curriculum.

		MULTIPLICATION	KEY VOCABULARY		
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Groups of; lots of; times; array; altogether; multiply; count	Groups of; lots of; times; array; altogether; multiply; count; multiplied by; repeated addition; factor	Groups of; lots of; times; array; altogether; multiply; count; multiplied by; repeated addition; column; row; commutative; sets of; equal groups; times as big as; once, twice, three times; product; factor; grid method	Groups of; lots of; times; array; altogether; multiply; count; multiplied by; repeated addition; column; row; commutative; sets of; equal groups; times as big as; once, twice, three times; product; factor; grid method; multiple; tens; ones; value; factor pair; approximate	Groups of; lots of; times; array; altogether; multiply; count; multiplied by; repeated addition; column; row; commutative; sets of; equal groups; times as big as; once, twice, three times; product; factor; grid method; multiple; tens; ones; value; factor pair; approximate; integer; decimal; short/long multiplication; regroup	Groups of; lots of; times; array; altogether; multiply; count; multiplied by; repeated addition; column; row; commutative; sets of; equal groups; times as big as; once, twice, three times; product; factor; grid method; multiple; tens; ones; value; factor pair; approximate; integer; decimal; short/long multiplication; regroup; tenths; hundredths

^{*}This vocabulary is not an exhaustive list. Teachers will use recommended NCETM vocabulary in lessons.

	REAL-LIFE REPRESENTATION	OTHER REPRESENTATION
Making doubles	Children explore doubles in their environment including in games such as on dominoes or dice. They focus on the understanding of doubles being 2 equal groups.	Children use five frames to find doubles by lining up counters or cubes.
		Double 4 is 8.
	Double 4 is 8.	
	Double 2 is 4.	
	Double 3 is 6.	

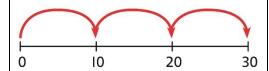
	CONCRETE	PICTORIAL	ABSTRACT
Recognising and making equal groups	Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal.	Children draw and represent equal and unequal groups.	Three equal groups of 4. Four equal groups of 3.
oquar y ooq	A B C	B A A A	
Finding the		100 squares and ten frames support counting	Use a number line to support repeated
total of equal groups by counting in 2s,	7777777	in 2s, 5s and 10s.	addition through counting in 2s, 5s and 10s.
5s and 10s	There are 5 pens in each pack	1 2 3 4 5 6 7 8 9 10	() () () () () () () () () ()
	510152025303540	II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	0 10 20 30 40 50

YEAR 2 MULTIPLICATION

	CONCRETE	PICTORIAL	ABSTRACT
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication. 3 groups of 5 15 in total	Use a number line and write as repeated addition and as multiplication. $5 + 5 + 5 = 15$ $3 \times 5 = 15$
Using arrays to represent multiplication and support understanding	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.
Understanding commutativity	Use arrays to visualise commutativity.	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication.	Use arrays to visualise commutativity.
	I can see 6 groups of 3. I can see 3 groups of 6.	This is 2 groups of 6 and also 6 groups of 2.	5 + 5 + 5 + 5 = 20 $4 \times 5 = 20$ and $5 \times 4 = 20$

Learning ×2, ×5
and ×10 table
facts

Develop an understanding of how to unitise groups of 2, 5 and 10 and learn corresponding times-table facts.



3 groups of 10 ... 10, 20, 30 3 × 10 = 30 Understand how to relate counting in unitised groups and repeated addition with knowing key timestable facts.

$$10 + 10 + 10 = 30$$

 $3 \times 10 = 30$

Understand how the times-tables increase and contain patterns.

10

I × I0 =

10 10

2 × 10 =

10 10 10

3 × 10 =

10 10 10 10

4 × 10 =

10 10 10 10

5 × 10 =

10 10 10 10 10

6 × 10 =

10 10 10 10 10 10

7 × 10 =

10 10 10 10 10 10 10

8 × 10 =

10 10 10 10 10 10 10 10

9 × 10 =

10 10 10 10 10 10 10 10 10

10 × 10 =

10 10 10 10 10 10 10 10 10 10

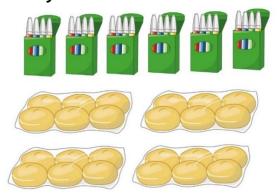
II × I0 =

10 10 10 10 10 10 10 10 10 10 10

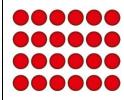
12 × 10 =

5 × 10 = 50

 $6 \times 10 = 60$


YEAR 3 MULTIPLICATION

	CONCRETE	PICTORIAL	ABSTRACT
Understanding equal grouping and repeated addition	Children continue to build understanding of equal groups and the relationship with repeated addition. They recognise both examples and non-examples using objects. Children recognise that arrays can be used to model commutative multiplications. I can see 3 groups of 8. I can see 8 groups of 3.	Children recognise that arrays demonstrate commutativity. This is 3 groups of 4. This is 4 groups of 3.	Children understand the link between repeated addition and multiplication. 8 groups of 3 is 24. 8 $3+3+3+3+3+3+3+3+3+3=24$ A bar model may represent multiplications as equal groups. 24 6 \times 4 = 24


Using
commutativity
to support
understanding
of the times-
tables

Understand how to use times-tables facts flexibly.

There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4 = 24$ to work out both totals.

Understand how times-table facts relate to commutativity.

 $6 \times 4 = 24$ $4 \times 6 = 24$

Understand how times-table facts relate to commutativity.

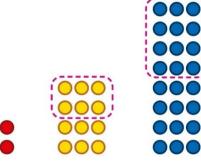
I need to work out 4 groups of 7.

I know that $7 \times 4 = 28$

so, I know that

4 groups of 7 = 28 and 7 groups of 4 = 28.

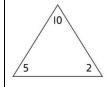
Understanding and using ×3, ×2, ×4 and ×8 tables.


Children learn the times-tables as 'groups of', but apply their knowledge of commutativity.

I can use the ×3 table to work out how many kevs.

I can also use the ×3 table to work out how many batteries.

Children understand how the ×2, ×4 and ×8 tables are related through repeated doubling.



 $3 \times 2 = 6$ $3 \times 4 = 12$

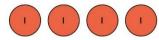
 $3 \times 8 = 24$

Children understand the relationship between related multiplication and division facts in known times-tables.

 $2 \times 5 = 10$ $5 \times 2 = 10$ $10 \div 5 = 2$ $10 \div 2 = 5$

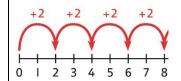
Using known facts to multiply 10s, for example 3 × 40 Explore the relationship between known times-tables and multiples of 10 using place value equipment.

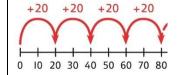
Make 4 groups of 3 ones.


Make 4 groups of 3 tens.


What is the same? What is different?

Understand how unitising 10s supports multiplying by multiples of 10.





4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens.

$$4 \times 2 = 8$$

 $4 \times 20 = 80$

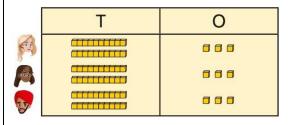
Understand how to use known times-tables to multiply multiples of 10.

$$4 \times 2 = 8$$

 $4 \times 20 = 80$

Multiplying a 2-digit number by a 1-digit number Understand how to link partitioning a 2-digit number with multiplying.

Each person has 23 flowers.


Each person has 2 tens and 3 ones.

There are 3 groups of 2 tens.

There are 3 groups of 3 ones.

Use place value equipment to model the multiplication context.

There are 3 groups of 3 ones.

There are 3 groups of 2 tens.

Use place value to support how partitioning is linked with multiplying by a 2-digit number.

$$3 \times 24 = ?$$

Т	0

$$3 \times 4 = 12$$

Т	0
	0000
	8 8 8 8
	0000

 $3 \times 20 = 60$

$$60 + 12 = 72$$

$$3\times24=72$$

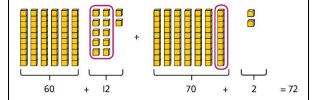
Use addition to complete multiplications of 2-digit numbers by a 1-digit number.

$$4 \times 13 = ?$$

$$4 \times 3 = 12$$

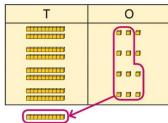
$$4 \times 10 = 40$$

$$12 + 40 = 52$$


$$4 \times 13 = 52$$

Multiplying a 2-digit number by a 1-digit number, expanded column method Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications.

$$3 \times 24 = ?$$


$$3 \times 20 = 60$$

 $3 \times 4 = 12$

$$3 \times 24 = 60 + 12$$

 $3 \times 24 = 70 + 2$
 $3 \times 24 = 72$

Understand that multiplications may require an exchange of 1s for 10s, and also 10s for 100s.

$$4 \times 23 = ?$$

Т	0
	5 5

$$4 \times 23 = 92$$

Т	0
10 10	000
10 10	000
10 10	000
10 10	000
10 10	000

Children may write calculations in expanded column form, but must understand the link with place value and exchange.

Children are encouraged to write the expanded parts of the calculation separately.

T	0
	00000
	00000
	00000
	00000
-	00000
	00000

	Т	0	
	1	5	
×		6	
•			6 × 5
+			6 × 10

$$5 \times 28 = ?$$

$$\begin{array}{c|c}
 \hline
 & T & O \\
 \hline
 & 2 & 8 \\
 \times & 5 \\
 \hline
 & 40 & 5 \times 8 \\
 \hline
 & 100 & 5 \times 20 \\
 \hline
 & 140 & \end{array}$$

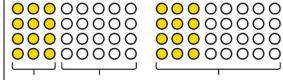
YEAR 4 MULTIPLICATION

	CONCRETE	PICTORIAL	ABSTRACT
Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1, 10 and 100. 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of 1, 10 and 100. 3 × 4 = 12 3 × 40 = 120 3 × 400 = 1,200	Use known facts and understanding of place value and commutativity to multiply mentally. $4 \times 7 = 28$ $4 \times 70 = 280$ $40 \times 7 = 280$ $4 \times 700 = 2,800$ $400 \times 7 = 2,800$
Understanding times-tables up to 12 × 12	Understand the special cases of multiplying by 1 and 0. 5 × 1 = 5 5 × 0 = 0	Represent the relationship between the ×9 table and the ×10 table. Represent the ×11 table and ×12 tables in relation to the ×10 table. 2 × 11 = 20 + 2 3 × 11 = 30 + 3 4 × 11 = 40 + 4	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table 1 know that $7 \times 5 = 35$ so 1 know that $7 \times 6 = 35 + 7$. $\times 5$ table and $\times 7$ table $3 \times 7 = 3 \times 5 + 3 \times 2$ $3 \times 5 \times $

Understanding and using partitioning in multiplication

Make multiplications by partitioning.

4 × 12 is 4 groups of 10 and 4 groups of 2.

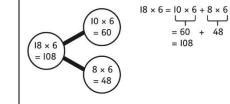


$$4 \times 12 = 40 + 8$$

Understand how multiplication and partitioning are related through addition.

0000000

 $4 \times 8 = 32$


$$4 \times 3 = 12$$
 $4 \times 5 = 20$

$$4 \times 3 = 12$$

 $4 \times 5 = 20$
 $12 + 20 = 32$

$$4 \times 8 = 32$$

Use partitioning to multiply 2-digit numbers by a single digit.

$$18 \times 6 = ?$$

$$18 \times 6 = 10 \times 6 + 8 \times 6$$
= 60 + 48
= 108

Column multiplication for 2- and 3-diait numbers multiplied by a single digit

Use place value equipment to make multiplications.

Make 4 × 136 using equipment.

I can work out how many 1s, 10s and 100s.

There are
$$4 \times 6$$
 ones... 24 ones
There are 4×3 tens ... 12 tens
There are 4×1 hundreds ... 4
hundreds

Use place value equipment alongside a column method for multiplication of up to 3-digit numbers by a single digit.

Use the formal column method for up to 3-digit numbers multiplied by a single digit.

Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.

Multiplying more than two numbers

Represent situations by multiplying three numbers together.

Each sheet has 2 × 5 stickers. There are 3 sheets.

There are $5 \times 2 \times 3$ stickers in total.

$$5 \times 2 \times 3 = 30$$
$$10 \times 3 = 30$$

Understand that commutativity can be used to multiply in different orders.

$$2 \times 6 \times 10 = 120$$

 $12 \times 10 = 120$

$$10 \times 6 \times 2 = 120$$

 $60 \times 2 = 120$

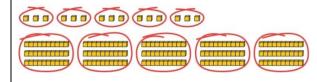
Use knowledge of factors to simplify some multiplications.

$$24 \times 5 = 12 \times 2 \times 5$$

$$12 \times 2 \times 5 =$$

$$12 \times 10 = 120$$

So,
$$24 \times 5 = 120$$


YEAR 5 MULTIPLICATION

	CONCRETE	PICTORIAL	ABSTRACT
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5. Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and non-examples of square numbers. 8 × 8 = 64 8² = 64 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10, 100 and 1,000 by unitising. 4 × 1 = 4 ones = 4	Understand the effect of repeated multiplication by 10.	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. H T O I 7 17 × 10 = 170 17 × 100 = 17 × 10 × 10 = 1,700 17 × 1,000 = 17 × 10 × 10 × 10 = 17,000

Multiplying by
multiples of
10, 100 and
1,000

Use place value equipment to explore multiplying by unitising.

5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens.

So, I know that 5 groups of 3 thousands would be 15 thousands.

Use place value equipment to represent how to multiply by multiples of 10, 100 and 1,000.

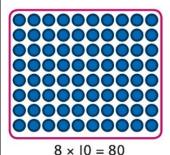
$$4 \times 3 = 12$$

 $4 \times 300 = 1,200$

$$6 \times 4 = 24$$

 $6 \times 400 = 2,400$

Use known facts and unitising to multiply.


$$5,000 \times 4 = 20,000$$

Multiplying up to 4-digit numbers by a single digit

Explore how to use partitioning to multiply efficiently.

 $8 \times 7 = 56$

8 × 17 = ?

$$80 + 56 = 136$$

So, 8 × 17 = 136

Represent multiplications using place value equipment and add the 1s, then 10s, then 100s, then 1,000s.

Н	T	0
(00)	0000000	000
000	000000	000
(iii)	000000	000
000	000000	000
(iii)	10 10 10 10	000

Use an area model and then add the parts.

100		60	3
5	$100 \times 5 = 500$	$60 \times 5 = 300$	3 × 5 = 15

Use a column multiplication, including any required exchanges.

Multiplying 2digit numbers by 2-digit numbers

Partition one number into 10s and 1s, then add the parts.

$$23 \times 15 = ?$$

 $10 \times 15 = 150$

 $3 \times 15 = 45$

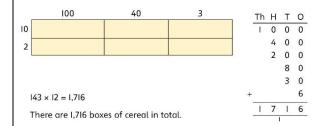
There are 345 bottles of milk in total.

+ 4 5

23 × 15 = 345

Use an area model and add the parts.

	20 m	8 m	Н	Т	0
			2	0	0
10 m	$20 \times 10 = 200 \text{ m}^2$	$8 \times 10 = 80 \text{ m}^2$	Ţ	0	0
				8	0
			+	4	0
5 m	$20 \times 5 = 100 \text{ m}^2$	$8 \times 5 = 40 \text{ m}^2$	4	2	0
				Į.	


$$28 \times 15 = 420$$

Use column multiplication, ensuring understanding of place value at each stage.

Multiplying up to 4-digits by 2-digits

Use the area model then add the parts.

Use column multiplication, ensuring understanding of place value at each stage.

Progress to include examples that require multiple exchanges as understanding, confidence and fluency build.

Then multiply 1,274 by 30.

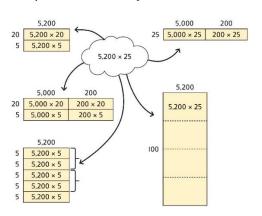
Finally, find the total.

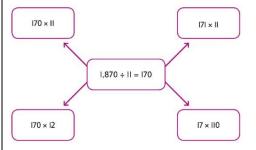
Multiplying decimals by 10, 100 and	Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths. Represent multiplication by 10 as exchange on a place value grid.		uge Understand how this exchange is represented on a place value chart.		
1,000		0 • Tth Hth	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

YEAR 6 MULTIPLICATION

	1		Learning Trust	
	CONCRETE	PICTORIAL	ABSTRACT	
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. Th H T O O O O O O O O O O O O O O O O O O	Use place value equipment to compare methods. Method I 3 2 2 5 3 2 2 5 3 2 2 5 3 2 2 5 1 2 9 0 0 1 1 2 Method 2 Method 2	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 3.000 200 20 5 4 12.000 800 80 20 12.000 + 800 + 80 + 20 = 12.900 Method 4 3 2 2 5 × 4	
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication. Method	1 2 9 0 0 0 1 2 2 2 2 2 2 2 2 2	

Using knowledge of factors and partitions to compare methods for multiplications

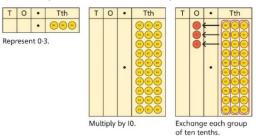

Use equipment to understand square numbers and cube numbers.

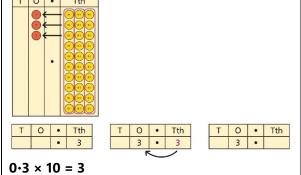

$$5 \times 5 = 5^2 = 25$$

 $5 \times 5 \times 5 = 5^3 = 25 \times 5 = 125$

Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately.

Represent and compare methods using a bar model.

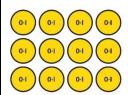

Use a known fact to generate families of related facts.


Use factors to calculate efficiently.

Multiplying by 10, 100 and 1,000

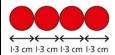
Use place value equipment to explore exchange in decimal multiplication.

0·3 × 10 = ? 0·3 is 3 tenths. 10 × 3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones. Understand how the exchange affects decimal numbers on a place value grid.


Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10, 100 and 1,000.

$$8 \times 100 = 800$$

 $8 \times 300 = 800 \times 3$
 $= 2,400$
 $2.5 \times 10 = 25$
 $2.5 \times 20 = 2.5 \times 10 \times 2$
 $= 50$

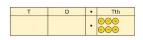


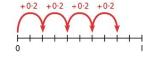
Multiplying decimals

Explore decimal multiplications using place value equipment and in the context of measures.

3 groups of 4 tenths is 12 tenths. 4 groups of 3 tenths is 12 tenths.

4 × 1 cm = 4 cm 4 × 0·3 cm = 1.2 cm 4 × 1·3 = 4 + 1·2 = 5·2 cm


Represent calculations on a place value grid.


 $3 \times 3 = 9$

 $3 \times 0.3 = 0.9$

Т	0	•	Tth
		•	01 01 01 01 01 01 01 01 01

Understand the link between multiplying decimals and repeated addition.

Use known facts to multiply decimals.

$$4 \times 3 = 12$$

 $4 \times 0.3 = 1.2$
 $4 \times 0.03 = 0.12$

$$20 \times 5 = 100$$

 $20 \times 0.5 = 10$
 $20 \times 0.05 = 1$

Find families of facts from a known multiplication.

I know that $18 \times 4 = 72$.

This can help me work out:

Use a place value grid to understand the effects of multiplying decimals.

	Н	Т	0	•	Tth	Hth
2 × 3			6	•		
0·2 × 3			0	•	6	
0·02 × 3				•		